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We consider the interaction between a shock wave and thin extended channels with elevated a thermal 

diffusivity. I t  is shown that a thermal perturbation ahead of the shock wave front leads to the effect of a 

"warm layer," i.e., to the formation of a large-scale self-similarly growing precursor. 

When a shock wave (SW) moves in a medium containing thin extended channels of reduced density oriented 

at a right angle or some other not very small angle to the shock front, distortion of the wave front occurs, and 

ahead of it a wedge-shaped or cone-shaped perturbation (precursor) arises. At the present time, this regime has 

been fairly thoroughly studied for channels in the form of plane layers or cylinders (see, e.g., [1-4  ], where it is 

shown that at rather large times, when an SW traverses a distance in a channel greatly exceeding its thickness, 
the flow in the precursor has a self-similar nature). 

Let us consider another form of the local anisotropy of a medium, namely, a thin extended channel with 

elevated thermal diffusivity produced, for example, by means of an oriented addition of a certain admixture with 

atomic number Z lower than that of the environment. If the concentration of the admixture is low, then all the 

thermodynamic properties of the admixture-containing layer will be the same as in the "uncontaminated" medium, 

but, because of the strong dependence of the optical properties of a substance and other characteristics of it on the 

atomic number, the coefficients of radiative and electronic heat conduction may differ appreciably from the 

corresponding background values. A similar situation can also be encountered when a perturbing layer consists 

entirely of another substance but both gases are preliminarily heated up to rather high temperatures. At high 

temperatures and a high degree of ionization of various gases their "apparent" atomic weights will almost coincide 

[5 ]. Correspondingly, at the same initial pressure and initial temperature the initial densities and heat capacities 

of gases will also be nearly equal. At the same time the values of the coefficients of radiative heat conduction depend 

on the mean charge Z in an ionized gas (or on the atomic number Z in the case of complete ionization) more 

strongly than the equation of state. Therefore, there are situations where despite close densities of the substances 

of the layer and the main gas their thermal diffusivity coefficients may, generally speaking, differ by orders of 
magnitude. 

Suppose that an SW propagates through such a locally anisotropic medium white heating the gas up to 

substantially higher temperatures than the initial temperature. Since the rate of heat transfer along the channel is 

rather high, a thermal precursor arising ahead of the SW extends in the direction of the channel, forming a zone 

with a temperature higher than that of the surrounding medium. As shown by results of numerical calculations [6 ] 

at the two-dimensional nonstationary problem of propagation of a pure heat wave (HW) in a medium containing 

channels with elevated thermal diffusivity, in the limit the motion of the thermal precursor occurs not self-similarly, 

but in a steady-state fashion, since over time a balance is attained between the heat fluxes: that entering the 

precursor and that leaving the precursor through its side surface. The length of the steady-state thermal precursor 

is directly proportional to the channel thickness and to the ratio of the thermal diffusivity coefficients in the channel 

and the surrounding medium. Therefore, by increasing the thickness of the channel or changing the composition 
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of the admixture (thus increasing the thermal diffusivity in the channel), it is possible to attain a length of the 

thermal precursor such that the time for the SW front to cover this distance will be sufficient for the development 

of gasdynamic processes in the direction perpendicular to the channel. 

As a result of transverse expansion of the channel, ahead of the SW front a new channel of limited length 

l arises that is continuously generated by the mechanism of heat conduction has a density p lower than the density 

P0 of the surrounding medium. The presence of this channel wilt lead, in turn, to the formation of a gasdynamic 

precursor ahead of the SW front (similar to that observed in experiments and calculations in [1-4]) .  The 

parameters of this precursor will be determined by the dynamics of the lateral expansion of the initial channel 

responsible for the selection of the characteristic "working" density Pc in the channel. 

The mass of the gas in the forming channel of lower density turns out to be much greater than the initial 

mass in the channel with elevated thermal diffusivity, with the thickness of the expanded channel also being much 

larger. In essence, the role of the channel of elevated thermal conductivity comes down to the heating of gas along 

the channel axis up to a temperature close to that of the SW front and to the initiation of the lateral expansion of 

gas into the surrounding medium. The parameters of lhe initial channel (thickness and thermal diffusivity) 

determine only the length l of the plug of heated gas and, correspondingly, the time tc of its expansion up to the 

density Pc < Po during which the shock front covers the distance l. 

We consider the above-described thermal mechanism underlying the initiation of shock front perturbation 

using as an example the following model problem. Suppose that ahead of the front of a stationary plane SW 

generated by a piston and propagating with the velocity Ds a channel of finite length l with temperature equal to 

the temperature Ts behind the SW front always exists. Such a situation arises, for example, when a strong intensely 

radiating SW (supercritical in the terminology of [5]) moves through a gas, when the effects of radiative heat 

conduction afford the heating of the gas up to the postfrontal temperatures at a finite length ahead of the shock 

front, i.e., a stationary thermal "tongue." However, we will not specify the mechanism of nonlinear heat conduction, 

but rather consider the model case of a power-law dependence of the thermal conductivity coefficient on temperature 

and density: 

2 = C O T 3 / k ,  (1) 

where the coefficient k ( T ,  p)  = C 1 T - a l / p  fll (in the case of radiative heat conduction Co = (16/3)cr, where cr is the 

Stefan-Boltzmann constant and k has the meaning of the mean Rosseland absorption coefficient). We also consider 

the specific internal energy of the gas to be a power function of temperature and density: 

e = C 2 T a2 p-/~2, (2) 

while the effective specific heat ratio 

7 = 1 + p / 6 o e )  (3) 

is assumed to be constant. 
Since the influence of the elevated thermal diffusivity in the channel comes down to just the effective heating 

of the gas in it over a length l exceeding the length of heating in the main gas, while the initial thickness and 

density of the channel "are forgotten" in the process of its lateral expansion, then, to simplify the analysis and 
make the results more universal, we will consider the limiting case where the initial thickness of the channel is 

equal to zero. In the two-dimensional plane geometry of flow, when the initially unperturbed shock front is parallel 

to the Oy axis, this case is realized via an additional boundary condition on the symmetry axis (or rigid wall) Ox: 

T =  T s for x s <_ x < x s + l ,  (4) 

where Xs(t) is the coordinate of the perturbed SW front in a channel of zero initial thickness. We note that to 

perform a numerical calculation of a two-dimensional nonstationary problem in a real situation (without the 

simplifying condition (4)), where the initial thickness of the channel increases by orders of magnitude in the process 
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of its expansion but nevertheless remains small in comparison with the dimensions of the gasdynamic precursor, 

which increases, with time (even upon expansion the channel remains "thin"), it is necessary to use different-scale 

movable difference grids with a large number  of nodes; such calculations demand very fast computers. 

First, we consider the dynamics of the lateral expansion of gas in a channel and estimate the values of its 

characteristic parameters.  If at the time of arrival of an SW at the section of an expanded channel  its thickness is 

smaller than l, the process of expansion can be considered one-dimensional (plane). The  value of the velocity of 

the main SW Ds, and together with it of the temperature Ts of the SW front and the channel, is assumed to be 

ra ther  large in order  to neglect the effects of the back pressure of the surrounding gas, which is considered to be 

absolutely cold. Therefore ,  it is necessary to determine the parameters of the motion and heating of initially 

quiescent absolutely cold gas with the initial density P0 in the half-space y > 0 with account for the boundary  

conditions: T(0, t) = Ts = const, v(0, t) --0.  

The qualitative picture of the process is as follows. The effects of heat conduction cause the propagation of 

an HW through the gas from the hot "wall" (y = 0). At the beginning this wave is fast (its velocity is D T ~ t - 05 ) ,  

the heated gas behind its front has no time to go into motion, and its density p hardly changes compared with the 

initial density P0 (the relative density of the gas is 09 = P / P o  ~ 1). With the passage of time the velocity of the HW 

drops, and the high pressure of the heated gas sets it in motion. An SW begins to form, which overtakes the HW 

at the time t = t.. In the gas a nonstat ionary complex arises that consists of the HW and the SW, which propagate 

in space with virtually the same velocities, which decay weakly in time. Because of the high velocities of sound in 

the hot region behind the HW front,  the pressure there  turns out to be equalized at each moment  of time; 

simultaneously the high thermal conductivity ensures the isothermality of the flow, and therefore the density in 

this regions is also virtually equalized, with co < 1. The gas temperature behind the HW front (which plays the 

part of a retarding piston) is much higher than the temperature behind the SW front, the mass flow rate through 

the HW front is extremely small, and its velocity DT(t)  changes in a narrow interval from the velocity D 1 (t) of the 

SW at t -~ t. to the minimum value 2D1 ( t ) / (7  + 1) at t >> t. (the "piston" turns out to be not rigid, but permeable,  

as though porous, with the "pores" closing with time). In this connection, the gas pressures behind the HW front 

and in the region between the HW and SW fronts practically coincide. Thus, the magnitude of the pressure turns 

out to be constant over the entire space from the wall to the SW front, decreasing with time in response to the 

decrease in the heat flux from the wall and the gas expansion. An overwhelming portion of the mass of the gas 

captured by an SW is raked up into a relatively cold, heavy, and thin "crust" between the HW and SW fronts. The 

mass of the heated and rarefied gas behind the HW front is much smaller than the mass of the crust, but it is 

precisely in it (and not in the crust) that the main portion of the total energy entering the system from the hot wall 

is contained in the form of internal energy. 

Similar stat ionary flow regimes with an H W - S W  complex under  conditions of nearly equalized pressure 

have been studied comprehensively in the theory of classical combustion (the modes of combustion from the closed 

end of a tube [7 ]), and they are also realized during the "burning" of a substance in a laser beam (the mode of 
"ejection" [8 ]). 

The  condition of pressure equalization and the consequence of energy balance in the system can be written 

in the form 

P / ( 7  - 1) = coPOe 2 = (7 + 1)/(7 - 1)POel , (5) 

coPoDe2 = q2 = (-)tOT/OY)2. (6) 

Here the subscripts 1 and 2 denote the values of parameters behind the SW front and on the wall, respectively. It 

is assumed that D 1 = D T = D. In (6) the kinetic energy of the gas behind the HW front and the total energy of the 

crust are neglected. Since the SW is strong, e 1 = 2 / ( 7  + 1)2D 2. The  value of ea(Ts, coPo) is determined from (2). 

Condit ions (5) and (6) make it possible to find power-law relationships for the change in the characteristic 

parameters co, p, D with time. In order  to avoid large errors in the determination of dimensional constants in front 

of the exponents,  it is necessary that the heat flux q2 from the hot wall be approximated accurately in (6), since 
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Fig. 1. One-dimensional flow in an expanding channel. Density of gas Pw near  

the heated "wall" vs time: 1) calculation; 2) estimate (9). 

both the temperature and the density change sharply simultaneously in the vicinity of the HW front. Since the 

pressure along the HW front is continuous, it is better  that the heat conduction coefficient 2 be approximated in 

the variables T and p. In this case, the temperature dependence of q2 is approximated in the form 

q2 - (  T23+30T/OY)2 - ( a 3  + 4) -1 (0 (Ta3+4/OY)2 -~ (a 3 + 4) -1 T~s3+4/(Dt),  (7) 

where a 3 = a 1 + f l l a 2 / ( 1  - / 32 ) .  The presence of the factor (a 3 -v 4) -1 in approximation (7) (much less than unity 

in actual cases) increases significantly the accuracy of the estimation of parameters.  

As a result, we obtain the following power-law relations for the characteristic parameters:  

oJ = ( t , / t )  1/(2+/51 - 2/52) )( , p = p .  ( t . / t  1-flZ)/(2+fll-2f12), 

D = D . ( t . / t )  0"5(1-/52)/(2+fll-2/52) (8) 

for  t > t. = 2CoT~s +a1"222/(C1C2(4 + a 1 +/3122/ (1  -/32))(72 - 1)p 1+fll-2f12), where  p.  = C2(Y - 1)T~s2p 1-/52, 

D . =  (0.5C20 p2 -- 1)T~sZPofl2) 0"5. 

The  above estimate makes it possible to follow t h e  change i n the characteristic parameters in a rarefied 

channel behind the HW front up to the time t = t. when oJ = 1. In this case, the quantity t. has the meaning of the 

time at which the shock wave overtakes the thermal wave, while p .  and D.  are the characteristic pressure and 

velocity at the moment  of overtaking. Strictly speaking, estimate (8) holds for times t >> t., when sonic perturbations 

have time to propagate multiply throughout the channel volume, and the mode of heating and expansion of gas 

with equalized pressure  is established. However, we may extend this estimate approximately up to the time 

t = t., the more so that the very concept of overtaking is purely conventional, since in reality gasdynamic and 

thermal processes proceed simultaneously. Thus,  we may assume that oJ - 1 when 0 < t < t., and it can be found 

from Eq. (8) when t ___ t.. 

We consider a specific example. Suppose a l  = 0,/31 = 1.64, a2 -- 1.5,/32 = 0.12, and 7 = 1.24. These  values 

of the exponents in laws (1), (2) and of the effective specific heat ratio roughly approximate the thermodynamics 

of an air plasma [5 ] and the mean Rosseland coefficient of radiation absorption in it (the latter coefficient in the 

region of temperatures T < 10 eV). Here,  we do not cite the values of the dimensional constants Co, C1, C2, or of 

the parameters T s and P0, since they are used to make quantities dimensionless in the numerical calculations whose 

results will be given below. In this case, the time is normalized by the quantity t., velocities by D.,  distances by 

D. t . ,  pressures by p. ,  temperatures by T.,  and densities by P0- From now on, we will use only dimensionless 

parameters without additional notation. 

In the case considered, Eqs. (8) yield 

- 0 . 2 9 4  - 0 . 2 5 9  - o . 1 3  ( 9 )  
p = o J = t  , p = t  , D = t  
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Fig. 2. One-dimensional  flow in an eXpanding channel. Distribution of the 

densities p (a), temperatures  T (b), velocities v (c), and pressures p (d) over 

the height y from the heated wall at the moments  of t ime t = 260 (1), 346 

(2), 432 (3), and 518 (4). 

We compare the results of est imate (9) for the characteristic value co of the relative densi ty in a channel  with the 

value Pw = P (0, t) obtained in a numerical  calculation of a similar one-dimensional  nonsta t ionary  problem with the 

same set of determining parameters  (see Fig. 1). The  figure demonstra tes  ra ther  satisfactory agreement  between 

the est imate and the calculation even in the region of establ ishment  of a regime at times t - 1. 

We no let us est imate the working density COc(t c) in an expanded channel arising ahead  of an SW in a 

two-dimensional  flow, having equated the time of expansion tc to the time I / D  s of propagation of the SW along the 

channel length. In the two-dimensional  problem analyzed Ds -~ 2.67, l -~ 57.6, and hence the characterist ic t ime 

of channel  expansion is tc = 21.6, and from Eqs. (9) we obtain that  the density in a channel  section at the t ime of 

arrival of the SW there is equal to COc = 0.405. We note that  the relatively small exponent  in the function a)(t) from 

Eqs. (8) or (9) produces conditions for stable selection of the determining paramete r  ~o c in a two-dimensional  flow. 

According to Eqs. (9), the characteristic velocity of the channel boundary  at the time t c of terminat ion of 

expansion is D c = 0.671, while its characterist ic  thickness is Yc "~ 16.5 < l, and  therefore  the use of a one-  

dimensional channel  expansion model for estimation seems to be justified. The  channel thickness y. = I at the t ime 

t = 1 of the overtaking of the heat  wave by the shock wave is much smaller than  the limiting thickness of the channel  

Yc; we note that  the value of y. coincides in order  of magnitude with the characteristic length of the heat ing tongue 

ahead of the front  of the main SW in a two-dimensional  flow. The  characteristic pressure in the channel at this 

very moment ,  Pc ~ 0.451, is 16 times smaller than the pressure,  Ps "~ 7.14, behind the front of the unper turbed  

SW incident on the channel  end face, and the effects of the backpressure  are insignificant; as demons t ra ted  by  the 

two-dimensional  calculation whose results are given below, in the case of formation of a gasdynamic  precursor  too 

the pressure behind a normal  shock propagating in the channel is about an order  of magni tude higher at the 

precursor apex than  the pressure Pc in the channel; i.e., under  the conditions considered the characterist ics of a 
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two-dimensional flow are determined by just one parameter,  namely, the magnitude of the relative rarefaction in 

a channel ~o c. 

In Fig. 2 distributions of the parameters in a channel over the distance from the wall are given that were 

obtained in a one-dimensional  calculation. They  illustrate the qualitative picture of the dynamics of channel  

expansion presented above. Naturally,  a real flow turns out to be somewhat more complex than that in the simple 

model suggested for estimation, with the difference being especially conspicuous in the vicinity of the HW front 

and in the interval between the HW and SW fronts. Nevertheless it is evident that the condition of equalization of 

the pressure in an expanding channel, which underlies the estimation, is fulfilled with good accuracy, thus ensuring 

reasonable agreement  between the calculated and es t imated values of rarefaction in a channel. 

Figures 3 and 4 illustrate the results of a two-dimensional numerical calculation. The  formation of a large- 

scale gasdynamic precursor ahead of the main shock front and the self-similar character  of its propagation are 
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clearly seen. In contrast to the results of earlier calculations [4 ] of a similar problem in a purely gasdynamic 

formulation without account for the effects of heat conduction (with an extended channel of finite thickness with 

a given constant rarefaction COo), the self-similar precursor arising in the present case joins, at the apex, with the 

stationary wedge of the thermal heating tongue formed upon expansion of a channel of "zero" thickness that is 

induced by heat conduction. In the calculation the divergence angle of the thermal wedge is equal to ~o T ~ arctan 

(0.28), which is in good agreement with the estimated value of this parameter ~OT ~ arctan ( y c / l )  ~ arctan (0.29). 

The wedge angle of the gasdynamic precursor in the calculation is equal to ~o ~ arctan(0.82) > 7'T. The value of 

~o can be used for determining the characteristic density COc in a channel in accordance with a simple estimate given 

in [2-4]: 

sin 90 = ~/-~, (10) 

whose accuracy for strong SWs is quite high. According to Eq. (10), we have COc = 0.4, which practically coincides 

with the above estimate of this parameter (the same value of the effective density COc was obtained directly in the 

two-dimensional calculation). The remaining qualitative picture of the developing two-dimensional flow does not 

undergo substantial changes compared to the purely gasdynamic case. The velocity of propagation of the apex of 

the shock-thermal wedge of the precursor along the channel axis is Dp = 2.87 (a universal constant of the beginning 

of stagnation), and the relative velocity of its growth ~ = (Dp - D s ) / D  s ~ 0.075 agrees satisfactorily with the 

results of gasdynamic calculations of the parameter ~(CO) for strong SWs [4 ]. 

The foregoing results show that the propagation of an SW in a medium with local nonuniformities of the 

type of thin extended channels of elevated thermal diffusivity leads to the effect of a "warm layer," which is a 

large-scale deformation of a shock front interacting with a thin rarefied channel. 

N O T A T I O N  

T, temperature; p, pressure; p, density; v, velocity; e, specific internal energy; 2, thermal conductivity 
coefficient; 7, effective specific heat ratio; q, heat flux density; t, time; x, y, Cartesian coordinates. 
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